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ABSTRACT:

The portfolio selection problem can be viewed as a
maximization of the risk-return relation based on the
input parameters, expected returns and covariance
between assets. As these parameters depend on
historical market data with stochastic behavior, their
real values are not achievable. The estimators haul
error that result in under-performance of the selected
portfolio. As a solution, we present and analyze a
penalized linear regression methodology, which
constrains the decision variables to limit the
estimation risk of the parameters.

Keywords: Portfolio selection, penalized regression,
elastic net, estimation risk.

RESUMEN:

El problema de seleccién de portafolio puede ser
entendido como la maximizacion de la relacion riesgo-
retorno basada en los parametros de entrada,
retornos esperados y covarianzas entre activos. Estos
parametros dependen de datos histdricos del mercado
con componente aleatorio y sus valores reales no son
conocidos. Los estimadores tienen errores que
conllevan a un comportamiento sub-6ptimo del
portafolio. Como una solucidn, presentamos y
analizamos una metodologia de regresion penalizada,
restringiendo las variables de decision para limitar el
riesgo de estimacion.

Palabras clave: Seleccion de portafolio, regresion
penalizada, red eldstica, riesgo de estimacion

1. Introduction

The art of making money in the stock market is indeed an art, as it seems impossible to
follow a simple recipe. Investors are differentiated based on their risk aversion profile and
their portfolios performances. As the risk aversion profile is intrinsic to the investor, it is
possible to study how to choose a better portfolio selection strategy for a given risk. These
studies can be agglomerated in what is called "Modern portfolio selection problem”, which
has been studied since Harry Markowitz published his paper “Portfolio selection” in 1952
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(Markowitz, 1952). In his seminal paper, it is proposed that the investor can select a group
of assets of the stock market, wisely choosing a weight that is held in each asset, not only
motivated by risk minimization or return maximization, but thinking in the diversification of
his investment. Following these ideas, it is possible to think that Markowitz finally created a
recipe, an optimization problem that can be easily solved, yet, there is art behind. Although
Markowitz created a new framework, it remains conceptual because, as he recognizes, his
model does not take into account the uncertainty of its parameters: expected returns of the
assets and covariance between them. As we like to maximize the return-risk relation, these
model parameters are significantly important. Pitifully, their real values are not easily
estimable and then, we can only rely on historical data to predict future performances.
However, new approaches have been formulated aiming to improve model’s performance as
they consider parameter’s uncertainty and also, taking advantage of special statistical
properties as sparsity, concept that will be discussed later. Interestingly, the key of success
of newest models is the creation of additional constraints, which is counterintuitive in an
optimization problem. As we have a vector of weights as our decision variable, some authors
have focused on constraining different norms of the vector, specifically, L1 or L2 norms [3]
(DeMiguel et al., 2009; Li, 2015).

The purpose of this article is to provide more detailed evidence on how the penalized
regression model improve the performance of optimal portfolios, using back-testing with real
data from the S&P 500, and under different comparison metrics and levels of risk aversion.
Firstly, we present how to solve the risk-return Markowitz’ relation as a linear regression
model and then, how to penalize it, creating the elastic-net model. Finally, we implement the
model with real data and explore the results showing that, due to the parameter’s
uncertainty, the constrained model has superior performance than the traditional one.

2. Methodology

2.1. Linear regression approximation for the portfolio selection
problem



We know that each investor has a portfolio with an expected return of E(w) = w'u with some risk over his
investment of a(w) = w'Zw, knowing that w is a column vector of p weights, one for each asset, u is a column
vector with the expected return of each asset and X is the p X p variance-covariance matrix. Then, an investor
would like to maximize the risk-return relation proposed in U(w) where y is a risk aversion coefficient.

Ulw) = wtu - %w‘Ew.

(1)

dw
(2015), knowing that the OLS estimator of a linear regression model ¥ = Xw + £ is obtained minimizing
(Y — Xw)t(Y — Xw),, that is, when —X'Y + X*X#W = 0;, and comparing this equation with the one obtained
after deriving (1) with respect to w, we can easily see that both of them are of the form a + bw = 0;, therefore,
we can match their coefficients, obtaining:

Thus, the optimal value of w is found with =0=2u—-yIw' =0=2w" = %2"1#. As it is proposed in Li

u=Xxy,
yE = XX,

1
As X is positive semi-definite matrix, it can be expressed as £ = UDU¢, and then £Zis estimable and £ = £1/251/2;
thus, from yZ = X‘X we obtain

X = 755,
vr (2)

and from u = X'Y we find that

V=212 (3)

Concluding that applying these definitions of X and Y, the portfolio selection problem can be solved with the OLS
estimator of the linear regression problem ¥ = Xw + ¢.

2.2. Improvements to the linear regression estimators



Linear regression model is somehow restricted because of its assumptions. For instance, if variables X; and X; are
highly correlated, the estimators ﬁ,- and B} will not lead us to adequate conclusions. In order to manage this
struggle, we would like to shrinkage the linear regression estimators correcting them. The elastic-net model
showed in (4) solves the linear regression model but creating a constraint over the L1 norm and the L2 norm of
the vector of coefficients, shrinking it.

min
(Bo,B) € R X RP

N
1 .l ,
EZI(Yi —Bo—X{B)¥ +2 5(1 - a)lpll; + a"ﬁ":]} (4)

This model will help us correcting various things. First of all, there is an inevitable correlation between the assets
that conform the stock market and so, a basic linear regression model could discard important information of
highly correlated variables. Applying the elastic-net model, portfolio weights of similar assets are regulated. Then,
this model aids us lessening the risk of our estimations due to the uncertainty of the expected returns, the
covariance matrix and its inverse. Is it known that correlation between assets will lead to a covariance matrix that
is “ill- conditioned” and a useful trick to cope that problem is to increase by a constant each element of the matrix
diagonal, £’ = I + &1. When we create the term ||8||3 in the elastic-net model, we are improving the estimation
of Z~*(Li, 2015). According to Shen et al. (2014), this L2 constraint also makes that portfolio weights remain similar
under rebalances on consecutive investment periods but it is beyond of this study to do so. On the other hand,
we can measure the estimation risk as the difference between equation (1) evaluated with the real parameters,
and the same equation evaluated with the estimated parameters, i.e.,|U(w; u,x) — U(w;ﬁ.ﬁ)|. This calculation
is regulated by the L1 norm of the vector of coefficients with the expression

w12 = U(w; 2,2)] < 1 - e lwlly + 218 - 2wl (s)

Therefore, creating a constraint over the L1 norm value will reduce our estimation risk of u and Z (Fan etal., 2012)
and a constraint over the L2 norm reduce the estimation risk of £~ 1.

2.3. Sparsity

When we take statistical models to high dimensions (largenumber of predictors), we
are moving to a world of sparsity. The general rule of this world is, roughly
speaking, that when we have a large amount of predictors it is intuitive to think that
only a group of them are relevant to describe our variable of interest.

In context of our problem, we have p as the number of assets that could be part of
the portfolio. As we all are aware, not all stocks are good for the investor; therefore,
he should not invest in all of them. The solution of (1), namely the Markowitz’
portfolio (MP), will assign a weight for each of the proposed assets. Some of them
will be small, even pretty near to zero, if the associated securities are not relevant
to the portfolio; nevertheless, the model will never be able to actually shift those
small weights to zero even if is desired.

Here again, elastic-net outstands over the MP. When the linear regression has L1
and L2 norm constraints, besides of having the advantages exposed in 2.2, it will
also select relevant variables. In pursuance of satisfying the norm constraint, some
of the portfolio weights will go to zero in optimality, helping the investor to choose
only some k of p assets that are statistically relevant.

Furthermore, as portfolios are rebalanced regularly, the investor need to assume
some transaction costs each time he buys or sells shares. While the MP will force
him to pay those costs for each of the p assets, disregarding if the asset has a high
or small weight in the portfolio; the elastic-net solution with k<p assets reduces the
transaction cost.

2.4. Algorithm implementation



The algorithm that is used to solve the proposed model is the following: Using the train data, we found [ and £.
Then, we created X and Y as proposed in 2.1, in equations (2) and (3). Afterward, the elastic-net is implemented.
To do so, a grid of possible values for @ and A parameters is created and then the optimal values (those that
generate the minimal MSE) (a*, A*) are found using cross validation. Finally, we run an elastic-net model with a*
and A* obtaining 442 coefficients that are the portfolio weights. These weights are implemented along 2015 to
evaluate the out-of-sample performance of the portfolio. In summary,

Table 1
Algorithm of implementation

1.  Estimate f1 and £ with the training data

2. Create Y and X with
y = 1
VY

X = fyss

3. Calibrate with cross validation the values of @ € A and A € A for the
elastic-net model using a grid of A X A where A = {0.1,0.3,0.5,0.7}
andA ={1€ R|A=0.001+n-0.01,n€ N,n € [1,500)}

§-2p

4. Fit elastic-net with tuned parameters a* and A°. Portfolio weights W
are defined as the vector of the estimated coefficients of the elastic-
net.

It is important to mention that £ is estimated by Principal Orthogonal ComplEment Thresholding (POET) method,
proposed in Fan et al. (2013) to do the estimation of large covariance matrices. On the other hand, g is simply
calculated as the mean of the daily logarithmic returns during the training window for each asset, resultinginap
dimensional vector.

3. Application

3.1. Data selection

For this case of study, we evaluate the portfolio performance with stocks that belong to S&P 500. We obtained
daily information -from 1998 to 2013- of the 500 stocks that were included in the index in 2013. Then, we also
searched for data of those stocks up to 2016. As there is not full available data for all of the quotes, we removed
some invalid entries to end up with data for 442 stocks. Having daily close prices P;, we estimated the logarithmic

returns, 7, = In (Pp—) for each selected asset from 2010 to 2015. We then defined a time window of 5 years, form
-1

2010 to 2014 as the training sample and 2015 as the test sample.

3.2. Model implementation



We use R to apply the algorithm proposed in 3.2. Firstly, POET package is used to create £ using soft thresholding
and k = 15. k is the number of factors and was chosen after analyzing a scree plot, viz. plotting the eigenvalues
of £, where £ is the covariance matrix estimated traditionally. In this way, from the scree plot we saw that for
k > 15, the plot is almost a straight line so a greater value of k is not necessary. Having £ and £ we can continue
with step 2: creating X and Y. This transformation depends on y, a risk aversion coefficient; in this study we are
not interested on how y should be estimated, as it deserves another paper. For this study, we are going to use a
risk aversion coefficient of 3.7 to compare the elastic-net versus the MP.

It is assumable that a higher coefficient leads to a lower value of the utility function and a lower coefficient leads
to a higher utility function in any of the portfolio selection strategies. To show that behavior, we are going to
evaluate the elastic-net performance when yis 1, 3, 3.7, 5 and 10.

Lastly, we use glmnet package to create the elastic-net model. This package was used in steps 3 and 4 because
allow us to perform the necessary cross validation and estimate the final model.

3.3. Model validation

For this case of study, we are not going to perform portfolio rebalancing. Instead, after obtaining w from the
training sample, we evaluate the behavior of that portfolio during 2015.

In the first place, we would like to see how the elastic-net model performs over the MP to see if we are obtaining
a better result. As a tool of evaluation, we are going to plot the cumulative wealth index of each strategy (elastic-
net and MP) and the passive index strategy (investing in SP500 index) during 2015.

Cumulative wealth (CW) is measured as
CW,=CW,_,-(1+R,) fort=1,..T
CW, =1USD,
where for each t,
R, = w'r,

7, being the column vector of logarithmic returns of the assets in the portfolio on day t and w! the transposed
vector of weights of the investment strategy.

That is to say, if we invest 1USD in the portfolio in the first stock day of 2015 and then, we reinvest our returns
on the portfolio every day, how much money we will receive at a day t.

We are also interested in how many entries of w vector are different from zero in each strategy. So we will find
the percentage NonZero = % * 100%, where | - | is the cardinality of a set -, Z is a set that contains all the assets
that conform the final portfolio and p is the number of total assets.

Besides, we are going to calculate the mean absolute deviation and annualized Sharpe Ratio (SR) for each strategy;
a portfolio with higher SR would be desirable. In addition, the Information Ratio (IR) will be calculated to compare

how the elastic-net and the MP performances over the benchmark, which will be the S&P 500 index for us. The
IR is the rate between the active premium and the tracking error, i.e.,

IR = E[R, - Ry]

) JVar[Rp —R,)

(6)

Where R, is the vector of portfolio returns and R,, the vector of S&P 500 index returns.

Another measure of risk-return relation it is the Calmar Ratio. It helps us estimating the relation between the
average return during some period and the maximum drawdown in the same period. We are going to evaluate
this measure for both MP and elastic-net knowing that a Calmar ratio greater than one is good, greater than three
is excellent and above five is more than desirable (Young, 1991). We will also provide plots of the daily return and
drawdowns for each strategy.

4. Results

First of all, we are going to compare the performance of the elastic-net versus the traditional
MP using a risk aversion coefficient of 3.7. The choice of this value will be discussed later.



As expected, the constraint over the L1 norm of the vector of coefficients in the elastic-net
model helped us creating sparsity, as it is viewable in Table 2. The percentage of non-zero

weights is 15.61% for the elastic-net compared to 100% of the MP. In this way, the elastic-
net model shows that it can shift some weights to zero lessening the transaction costs.

Tabla 2
Percentage of non-zero weights for each strategy

Elastic-net MP
Number. of non- 69 442
zero weights
Percentage of
15.61% 100%

non-zero weights

However, it is still important to see if having fewer assets in the portfolio yields better
results. The plot of the cumulative wealth index is shown in Figure 1 where we compare the
elastic-net portfolio, the MP and the CW investing directly in the S&P 500 index. During the
chosen sample, the elastic-net model outstands over the others because, for the same level
of risk aversion we obtain a higher plot of the CW. Figure 2 presents the same CW analysis
with different levels of risk aversion.

It is viewable that starting with one dollar in each strategy and reinvesting profits daily, the
elastic-net portfolio ends the year with 2.32 dollars while the MP ends with nearly 1.67
dollars.

Tabla 3
Portfolio performance indicators

Elastic-net MP
Mea.n ébsolute 0.018 0.018
deviation
Annuallzed. 1,971
Sharpe Ratio
Information Ratio 3.564 4.106
Calmar Ratio 7.303 3.241

In addition to the CW analysis, we obtained some portfolio performance indicators in Table
3. Firstly, we observed that when we measure risk of each portfolio based on mean absolute
deviation, similar values were found, as it is 0.018 for both strategies. The annualized
Sharpe Ratio has values greater than one proving a good performance over the risk free rate
in MP and elastic-net; a greater SR for elastic-net shows that the model outstands over the
MP. On the other hand, when we compare the portfolios versus the benchmark, both of
them are desirable over the passive index strategy. It is important to mention that the MP
showed a better information ratio. Lastly, we found that Calmar ratio for the MP is greater
than 3, giving us excellent results. Furthermore, the Calmar ratio for the elastic-net is
greater than 7 showing even a better performance.

Figure 1
Cumulative wealth index comparison between portfolio selection strategies



Cumulative wealth index for each strategy

Method
A Elastic net
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Figure 2
Cumulative wealth index using the elastic-net model for different type of investors

Considering these results, the elastic-net has a formidable behavior. Even though the MP
scored a higher IR, the elastic-net has an excellent relation versus the S&P 500 index as
well. It is important to mention that we are not taking into account transaction costs in any
strategy. As the elastic-net has lesser assets, including transaction costs will reduce some
performance indicators but not as much as it will for the MP; hence, creating a greater gap
between the performances of both portfolios in favor of the elastic-net. Furthermore, we

plotted daily returns and drawdowns for each strategy, as it is viewable in Figure 3 and
Figure 4

Figure 3 Elastic-net performance.

Elastic-net performance
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Considering these results, the elastic-net has a formidable behavior. Even though the MP
scored a higher IR, the elastic-net has an excellent relation versus the S&P 500 index as



well. It is important to mention that we are not taking into account transaction costs in any
strategy. As the elastic-net has lesser assets, including transaction costs will reduce some
performance indicators but not as much as it will for the MP; hence, creating a greater gap
between the performances of both portfolios in favor of the elastic-net.

Figure 4
MP performance

MP performance
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Furthermore, we plotted daily returns and drawdowns for each strategy, as it is viewable in
Figure 3 and Figure 4. From these figures we can conclude that both of the time series have
the same variance of their daily returns. We can see that the lower return for the elastic-net
is -0.078 versus -0.071 for the MP during all 2015. Even though, in terms of drawdown, the
maximum drawdown of the elastic-net is 18.5% while it is 22.2% for the MP; so the elastic-
net has a better “worst case scenario” than the MP as the Calmar ratio showed in Table 3.

Finally, we analyze the behavior of elastic-net model when changes. Assuming that the risk
aversion coefficient can be measured from 1 to 10 we evaluated the model with the values
of 1, 3, 3.7, 5 and 10. From Figure 2 it is viewable that the CW is inversely proportional to
the value of the risk aversion coefficient. As increases, we obtain lower curves of the
cumulative wealth index

Table 4
Non-zero assets for elastic-net model for
different values of risk aversion coefficient



Risk aversion

Percentage of non-zero

coefficient weights
256
242
Y= 3.5 m — 5475%
69 o
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p—t 10 — — . 0
Y 247 10.63%

Figure 5
Non-zero percentages for elastic-net model and different values of y

Percentage of non-zero assets in elastic-net for different risk
aversion coefficients

70%

60%

Percentage of non-zero assels

1 3 3,5 3,7 5 10

Risk aversion coefficient

Two groups are clear in the plot, one for values of lesser than 3.7 and the other for values
greater than 3.7. It is remarkable that for the group of the CW index line has more
variance that the grouped lines of . Thus, we found that a risk aversion coefficient of 3.7
could be a good measure for an average investor and that justifies the value used for the
comparison between MP and elastic-net.

Interestingly, when we evaluate the percentage of non-zero assets of each created portfolio
when changes, the same two groups are easily recognizable. As Figure 5 shows, there are
no significant changes in the percentage when the risk aversion coefficient changes between
1 and 3.7, and doesn’t change either when is between 3.7 and 10. Even though, the



percentage is significantly different between the groups. When the percentage is near 50%
and in other cases, it is approximately 10%. Real values are presented in Table 4. In any
case, sparsity is present in the model; the elastic-net select assets and it is stricter as the
risk aversion coefficient increases.

5. Conclusions

Some portfolio theories have been developed since Markowitz; nevertheless, some
adjustments need to be done before implementing those theories in real data applications. It
is impossible to invest without taking into account the randomness of the stocks prices in
the market and then, portfolio selection models must include any control over parameter’s
uncertainty. To cope this problem, we proposed a penalized linear regression model known
as elastic-net; which regulate the L1 norm and L2 norm of the vector of weights. Despite of
the addition of new constraints to the optimization problem, it gives better results in
empirical applications due to the uncertainty of the expected returns and the covariance
between them. We showed that the elastic-net model has a better performance over the MP
during a year of evaluation, without rebalancing, and using only 5 years of daily data to
estimate the parameters.

Furthermore, using the constrained model helped us controlling the estimation risk of its
parameters and it also helped us selecting which assets should or should not conform the
portfolio.

The elastic-net model changes accordingly to the risk aversion coefficient and it remains for
future works how to estimate an adequate risk aversion coefficient. It will be also interesting
to study model’s performance when some constraints are added; not the ones that control
parameter uncertainty but portfolio constraints that are common in real financial
applications. For instance, restricting the minimal percentage of health care assets in the
portfolio. Some methods that have been proposed to work with sparsity, like non-
parametrical graphical models, (e.g. Lafferty et al., 2012) can be applied to the portfolio
selection problem and thus, as future work they could be compared with the elastic-net.
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3.The L1 norm of the vector w is the sum of the absolute value of each of its entries, this is,||w||; = ¥7_, |w;|. On the other hand,

the L2 norm of the vector is ||w||, = ’ iy wf. In general, the Lp norm is ||wl|, = (ZI_,|w|")?, when p = o, |w||., =
max{w,}.
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